INTERMOUNTAIN POWER SERVICE CORPORATION

June 7, 2001

Richard Sprott, Director Division of Air Quality Department of Environmental Quality P.O. Box 144820 Salt Lake City, UT 84114-4820

Attention: Milka Radulovic

Dear Director Sprott:

IPSC NOTICE OF INTENT: Corrections

On April 4, 2001, Intermountain Power Service Corporation (IPSC) submitted a Notice of Intent (NOI) to modify the Intermountain Generating Station (IGS) in Delta, Utah. Up through May 29, 2001, IPSC submitted other information for the NOI, including a Best Available Control Technology (BACT) analysis. Pursuant to a request from the Division of Air Quality, we are herewith submitting information that corrects inaccuracies found in those documents.

Corrections to the Notice of Intent, dated April 4, 2001:

Page 1, 2nd paragraph under Section (1) PROCESS DESCRIPTION: This paragraph discusses boiler capacity in the last sentence. This should state that 'normal' boiler 'operating' capacity is about 6.2 million lbs steam per hour at 2822 psi drum pressure. The current boiler maximum capacity rating (MCR) is 6.6 million lbs steam per hour at 2975 psi.

Page 2, Last paragraph under Section (3) POLLUTION DEVICE DESCRIPTION:

This paragraph discusses proposed changes to NOx control technology in the last sentence. The term "moderately" should be removed, and the words "addition of best available control technology" should replace "replacement of the existing dual register low NOx burners with new technology staged combustion low NOx burners." The last sentence would then read "Also, the project includes installation of improved NOx controls, such as the addition of best available control technology."

Page 5, second bullet, "NOx Reduction Project":
The term "moderate" should be replaced with "BACT" in the first
and last sentences.

Mr. Richard Sprott Page 2 June 7, 2001

ATTACHMENT 1, Worksheet A:

A new worksheet is attached to correct oversights in decimal or arithmetic errors, specific to lead and beryllium.

ATTACHMENT 1, Worksheet B:

A new worksheet is attached to correct oversights in decimal or arithmetic errors, specific to lead and beryllium.

ATTACHMENT 1, Worksheet C:

This worksheet addresses hazardous air pollutants as required at R307-410-4. There are several chemicals for which screen modeling may be required. A new worksheet is attached with modeling results using SCREEN3.

Corrections to BACT Analysis, dated May 29, 2001:

Page 2, Table 1, Typical Coal Characteristics: This table has several different types of ASTM analytical representations of coal. To clarify this, a new Table 1 is attached here.

Completion

We appreciate the efforts of your staff in working with us. In a June 1, 2001 meeting, IPSC & DAQ discussed a probable time line to bring an approval order to fruition. We therefore assume that our NOI application is considered complete. However, IPSC will continue to provide clarifying information as requested to ensure the approval process proceeds smoothly. If, for some reason your office foresees any problem that could delay the issuance of an approval order, please contact us as soon as possible.

If you or any one of your staff have any questions, please contact Mr. Dennis Killian, Superintendent of Technical Services, at 435-864-4414, or dennis-k@ipsc.com.

Cordially,

S. Gale Chapman

President and Chief Operating Officer

RJC/BP/db Enclosures

> cc: Blaine Ipson, IPSC Reed Searle, IPA Mike Nosanov, LADWP

						ATTA	ATTACHMENT 1: Worksheet A	orksheet A
NOI / PSD Calculations								
Operating & Production								
Parameter	Average Value Uc	Nou	Post-Change Value					
Rated Output	875 Mwhe	whe	920					
Fuel Use (Coal)	5,264,292 tons/	ns/yr	5,578,473					
Plant Operating Time	16,386 Unit		16,386					
Heat Value	11,872 BTU/	U/Ib	11,872					
Heat Input (Actual)	7,628 MMB	MBtu/hr	8,083					
Heat Input (Design)	8,352 MMBtu/hr	MBtu/hr	9,225					
Heat Rate	9,564 Btu/KWhr	u/KWhr	9,475					
Fłow - Stack	125,000,000 soft	Ę.	133,000,000					
Emissions					PSD Significance	PSD Major	Difference	PSD
Parameter/Pollutant	2 Yr Average Value Uc	UoM	Post-Change Value	Change+/-	Levels	Trigger Value	(Trigger - Post)	Triggered?
dsa								
SO2	3586.31 To	Tons	3513.10	-73.21	07	3626.31	-113.21	Z
SO2 % Removal	93.62 %		93.88					
ΧŎN	25143.97 Tons	Suc	24346.10	797.87	07	25183.97	18.758-	N
00	1317.06 Tons	suc	1394.60	77.54	001	1417.06	-22.46	Z
PM10	273.77 Tons	ns	283.51	9.75	15	2	-5.25	z
Lead	0.087 Tons	Suc	0.105	0.018	009'0	189.0	-0.582	Z
VOC	12.65 Tons	Suc	13.40	0.75	07	52.65	-39.25	Z
Beryllium	0.0010 Tons	Suc	0.0011	0.00010	0.0004	0.0014	-0.00030	Ν
Mercury	0.081 Tons	suc	0.105	0.024	001:00	0.181	920.0-	Z
Fluorides (HF)	9.70 Tons	ns	10.16	0.46	ε			Z
Sulfuric Acid	4.06 Tons	ns	4.05	-0.01	2	11.06	10.7-	z

PSD / NSPS Chservations										ALIACTECAL L WORNING	A ACCUSINGED IN
dané Emissisticas - Disbatas (Editoria)						1 10 1	C 40 CO.	One district	Libertonia (Ber)	Charles Add (the)	Sulfinio Acid (Be)
	SO2 (lons)	SO2,% Removal	Nox (tons)	CO (GODS)	FIM TO Clones	C80 (05)	VVV (DS)		Sul American	CENT LATE STREET	SAME PASSES
1996	3759	92.28	19688	1080	8	224		3.57	270	BS LBL	
1001	5078	92.05	22675	1291	108	263		4.17	323	22905	
8001	4281	92.67	25708	1321	114	167				23436	8440
0000	3608	93.57	24179	1312	249	156	25394			19167	8234
0000	9474	93.67	26109	1322	299	191	25204			19621	8015
DOOZ	4058	82.8	23672	1265	171	200	25289		250	20854	8230
GW INDI C	3585	939	25144	1317	274	174	25299			19394	8124
COLOCEO: Assessed A Sin lane	3636		25184	1417	289	1374	105299			25394	22124
Aldeen, Average - oig. Hist.	2542	93.88	24346	1395	284	210	26809	2.23		20313	8108
Ujbried Acteds.											
										NSPS Determin	nation (lbs/fir)
										Maximum NOx	Maximum SO2
		Plant Onerating	Shift.	MBTUM	B.M.M.B.tu	bs/hr	CB/MMBIu	hrsd		Emission Rate	Emission Rate
	Coal Usage Bons)		Coal HV	ā	NOx Emission rate	NOx Emission Rate	SO2 Emission	SO2 Emission		(Last 5 years)	(Last 5 yea
1996	4310562	ı	11860	6657	6.39	2564				6045	
1997	5158867	16584	11789	7343	0.37	2738		813		4672	
1998	5278344	16683	11823	7481	0.41	3082				5331	
1899	5244783	16462	11858	7556	6:38	2938				5007	1456
2000	5283790	16309	11885	7701	0.42	3202	0.08			5441	
5 Year Avo	5055271	18275	11843	7348	0.39	2905			Max Prev. 5 yrs:	6045	
Last 2 Year Avo	5264292	18386	11872	7628	07'0	3070		438	٤		
Projected Actuals	5578473	16386	11843	8064	0.37	2972	0.05		Proposed Max:		
OPERATING CHANGES	Actual	Design									
	Max Heat Input	ısı	Fuel Use (coal, tons)	Heat Rate	Mibs/fir Steam	Hwhe	Stack				
Present Operation		8352	8352 5264292	9564	8.1	875					
	4604	2000	627 023 3	3670	08	ORO	133 000 000				

All increases / devreases based on coal use only. Fuel of a other bulk chemical chemical use not expected to change.

Estimated 15% normital reduction, with new Nox controts, of 2 yr avage Nox and 2854 tonyr increase in potential Nox formation.

Estimated 15% normital reduction, with new Nox controts, of 2 yr avage Nox and 2854 tonyr increase in potential Nox formation.

Estimated 15% normital removal improvement in sortibote efficiency.

Voc.'s calculated from HAPs list.

Projected norminal reading improvement. 8,0%

Projected norminal reading improvement. 8,0%

Projected norminal reading increases. 5,9%

Projected norminal reading increases. 5,9%

Projected norminal reading increases. 5,9%

SCREEN3 Modeling Results - HAP's

Listed compounds exceeded Emission Treshold Values, or had no OSHA values.

	Calc'd Results	<u>Model Input</u>	Model Output
POLLUTANT	Emission Rate (lbs/hr)	Emission Rate (g/s)	Max. Concentration (ug/m3)
Arsenic	0.001230355	0.000155025	0.00013
DEHP	0.001399686	0.00017636	0.0001479
Cyanide	0.047934441	0.00603974	0.005065
2,4-Dinitrotoluene	5.36866E-06	6.76451E-07	5.673E-07
Ethylene Dibromide	2.30085E-05	2.89907E-06	0.000002431
Propionaldehyde	0.007286035	0.00091804	0.0007699
Hydrogen Chloride	0.009981802	0.001257707	0.001055
Hydrogen Fluoride	0.056113641	0.007070319	0.00593

Assumptions:

Point Source

Stack Height 219m

Stack Diameter 8.6m

Gas Volume 2,166,667acfm

Stack Temp 322K

Ambient Temp 293K

Receptor Height 0m (flat terrain to max distance)

Rural Option

No Bldg Downwash

Simple Terrain (flat terrain to max distance)

Full Meteorology

Auto Distance Array

Terrain Height 0m

Min Distance 750m (Property Boundary)

Max Distance 100km

Distance to Max. Concentration 1117m

TABLE 1 TYPICAL IPSC COAL PHYSICAL AND CHEMICAL CHARACTERISTICS

Type of Analysis	Parameter	Actual Average
Proximate	Volatile	38.1%
	Moisture	8.5 %
	Ash	9.2 %
	Fixed Carbon	44.2%
ASTM Other	Sulfur	0.52 %
	Heating Value	11,850 btu/lb
	Grindability	46 HGI
Ultimate	%C	66.47 %
	%H	4.77 %
	%N	1.28 %
	%S	0.52 %
	%O	9.26 %
Trace	Antimony	3.1 ppm
	Arsenic	12 ppm
	Barium	113 ppm
	Beryllium	0.38 ppm
	Cadmium	0.66 ppm
	Chromium	24 ppm
	Cobalt	2.9 ppm
	Copper	7.8 ppm
	Hydrogen Chloride	299 ppm
	Hydrogen Fluoride	63 ppm
	Lead	7.1 ppm
	Manganese	9.9 ppm
	Mercury	0.061 ppm
	Nickel	4.7 ppm
	Selenium	2.4 ppm
	Vanadium	5.6 ppm
	Zinc	7.4 ppm
Mineral (Ash)	Silicon Dioxide	63.2 %
	Aluminum Oxide	15.5 %
	Titanium Dioxide	0.8 %
	Iron Oxide	3.3 %
	Calcium Oxide	7.1 %
	Magnesium Oxide	2.9 %
	Potassium Oxide	1.5 %
	Sodium Oxide	2.1 %
	Phosphorus Pentoxide	0.2 %
	Sulfur Trioxide	4.2 %
	Silica Equivalent Value	86.4 %
	Base:Acid Ratio	0.21
	Fusion Temperature (Fluid)	2333+ F

NOTE:

Data provided here are estimates only, based on available industry-wide information combined with specific analyses. These are not limits, but arithmetic means bounded by wide ranges of concentrations that are dependent on fuel source and type. Solid fuels naturally have wide variability in characteristics. This fuel information is in no way intended to represent binding fuel parameters.